

Technical Note

Title:Member and Nodal Deflections in MasterFrame analysis results and
steel designDate:17/03/2022

Versions: 2021.15 +

Program: MasterFrame Analysis, MasterKey Steel Design

Member and Nodal Deflections in MasterFrame analysis results and steel design

Nodal Deflections

The nodal deflections after analysis are the displacements of the nodes from their original positions prior to any loading being applied. As loading is applied the frame will deflect and the nodes will move. These nodal deflections can be displayed in the output graphics and in tabular format as shown below.

Node	No	dal Displace	ments (mm)	Nodal Rotations (Degrees)				
Node	δX→	δYT	δZA	δΧΥΖ	ФХ→	ΦY	ФZ Я	ΦXYZ	
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
7	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
21	14.09	-0.21	0.00	14.09	0.00	0.00	-0.29	0.29	
22	28.80	-0.25	0.00	28.81	0.00	0.00	-0.10	0.10	
31	17.03	-0.23	0.00	17.03	0.00	0.00	-0.31	0.31	
32	29.39	-0.28	0.00	29.39	0.00	0.00	-0.04	0.04	
43	23.24	-18.65	0.00	29.79	0.00	0.00	0.12	0.12	

Member Deflections

The member deflection after analysis is the displacement of a member from a straight line connecting its displaced end nodes. This is called the in-span deflection. Note that it is not the deflection of the member from its original position in the frame, but from the displaced end nodes. This is the deflection that would usually be checked against span/360 or a similar limitation so as to limit damage to the local brittle finishes.

	Node End1	Axial Force	Torque Moment	Shear Force (kN)		Bending Moment (kN.m)		Maximum Moment (kN.m @ m)			Maximum Deflection		
No.	End2	(kN)	(kN.m)	у-у	Z-Z	у-у	z-z		у-у		Z-Z	(mr	m @ m)
17	31	38.95C	0.00	41.18	0.00	-52.34	0.00		46.62		0.00		7.96
1/	43	18.12C	0.00	-14.42	0.00	35.80	0.00	@	4.566	0	0.000	0	3.551
18	32	44.21C	0.00	51.71	0.00	-118.39	0.00				0.00		3.65
10	43	23.37C	0.00	0.68	0.00	35.82	0.00			0	0.000	0	1.585
19	6	54.79C	0.00	0.54	0.00	0.00	0.00		0.03				1.54
19	21	52.70C	0.00	-20.38	0.00	-40.09	0.00	0	0.121			0	2.870
20	7	66.46C	0.00	-26.71	0.00	0.00	0.00						6.05
20	22	64.37C	0.00	-25.00	0.00	-104.51	0.00					0	2.627
21	21	52.70C	0.00	-20.38	0.00	-40.09	0.00		0.03				1 <mark>.</mark> 54
21	31	52.34C	0.00	-23.26	0.00	-52.27	0.00	@	0.121			0	2.870
22	22	64.37C	0.00	-25.00	0.00	-104.51	0.00						6.05
22	32	64.01C	0.00	-24.77	0.00	-118.40	0.00					0	2.627

Examples – portal frame and multi-storey building

Diagram showing nodal displacements and in-member deflection of a portal rafter

The portal frame has moved sideways and downwards under dead and live and side wind loading. The ends of the rafter have displaced by the amounts shown in blue. However, the rafter itself has only deflected 7.96mm from a straight line connecting its two ends. Similarly for the portal leg below where the column has deflected 5.23mm due to bending curvature.

Diagram showing nodal displacements and in-member deflections in a multi-storey frame

For the top left beam in this multi-storey model, the end nodes are deflecting vertically by 6.9mm and 17.3mm. The in-span deflection is shown as 14.8mm.

When you look at the Member Diagram for this beam it shows both end displacements and the overall beam deflection from its original position. This max value will be at approx the middle of the beam and is made up of the average of the end node displacements plus the in-span deflection.

(6.9 + 17.3)/2 + 14.8 = 26.9mm approx (Note that the max deflection may not necessarily be at the exact centre of the beam).

Steel Design

In the steel design of a member the deflection check uses the in-span deflection of the member due to its bending as this is what you want to check for against the finishes deflection criteria.

So, in the example above, the top beam is checked for 14.8mm against span/360.

Axial with Moments (Member) Member SB L1 Id 9 @ Level 1 in Load Case 1

Member Loading and Member Forces

Loadin	g Comb	ination : 1 UT + 1.35 I	D1 + 1.5 L1	
D1	D	077.010	(kN/m ³)
D1	UDLY	-030.000	(kN/m)
L1	UDLY	-015.000	(kN/m)

Mem ber No.	Node End1 End2	Axial Force (kN)	Force (kN)	Bending Moment (kN.m)	Maximum Moment (kN.m @ m)	Maximum Deflection (mm @ m)		
9	16 17	84.032C 84.032C	165.653 -215.923	-81.035 -231.844	134.690 @ 2.580	@ 14.79		

Classification and Effective Area (EN 1993: 2006)

Class =Fn(b/T,d/t,fy,N,My,Mz) Auto Design Load Cases	8.82, 44.51, 355, 84.03, 231.84, 0 1	(Axial: Non-Slender)	Class 2
Local Capacity Check			
UNy+kyy.UM.y+kyz.UM.z	0.045+0.556x0.843+0.585x0.000	0.514	OK
UNz+kzy.UM.y+kzz.UM.z	0.041+0.334x0.843+0.975x0.000	0.323	OK

Similarly for a portal column leg, the steel design deflection check is for the deflection of the member due to its bending curvature as opposed to the max displacement of the node at its top, in this case 5.23mm in-span deflection and not the 17.1mm at its head.

Axial with Moments (Member) Column 1 : Members 19 & 21 (C\1) Between 2.100 and 3.500 m, in Load Case 60

Member Loading and Member Forces

Loading Combination: 1 UT + 1.25 D1 + 1.25 D2 + 1.5 L0 + 1.5 L1 + 0.75 W5 UT Spacing 06.000 [Multiply AllLoads] UT PartFix 00.00 +++ --- (Mt My Mz)

UT	PartFi	LX	00.00	+++	 (Mt	My	MZ)
W5	UDLX -	-00	0.253		[kN,	/m	1

1.75	Node End1	Axial Force	Torque Moment	oad Case 60 and Max Shear Force (kN)		ximum Deflection fror Bending Moment (kN.m)		m Load Case 135 Maximum Moment (kN.m @ m)		Maximum Deflection	
	End2	(kN)	(kN.m)	у-у	Z-Z	у-у	z-z	у-у	Z-Z	(mm @ m)	
	6 31	107.48C 105.22C	0.00 0.00	-42.96 -37.72	0.00 0.00	0.00	0.00 0.00		0.00 @ 0.000	5.23 @ 2.749	

Classification and Effective Area (EN 1993: 2006)

Section (38.98 kg/m)

406x140 UB 39 [S 355]

UNz+kzy.UM.y+kzz.UM.z	0.075+0.987x0.566+1.050x0.000	0.634	OK
Deflection Check - Loa	d Case 135	The second se	
In-spanδ≤ Span/360	5.23≤ 4600 / 360	5.23 mm	OK

Any nodal displacement criteria should be checked separately for the frame, eg, apex deflection or eaves horizontal movement for a portal frame.

Regards

